- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Green, Jason_R (4)
-
Das, Swetamber (3)
-
Martin, Andrew (1)
-
Sahbani, Mohamed (1)
-
Thuo, Martin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Das, Swetamber; Green, Jason_R (, Journal of Physics A: Mathematical and Theoretical)Abstract Some microscopic dynamics are also macroscopically irreversible, dissipating energy and producing entropy. For many-particle systems interacting with deterministic thermostats, the rate of thermodynamic entropy dissipated to the environment is the average rate at which phase space contracts. Here, we use this identity and the properties of a classical density matrix to derive upper and lower bounds on the entropy flow rate from the spectral properties of the local stability matrix. These bounds are an extension of more fundamental bounds on the Lyapunov exponents and phase space contraction rate of continuous-time dynamical systems. They are maximal and minimal rates of entropy production, heat transfer, and transport coefficients set by the underlying dynamics of the system and deterministic thermostat. Because these limits on the macroscopic dissipation derive from the density matrix and the local stability matrix, they are numerically computable from the molecular dynamics. As an illustration, we show that these bounds are on the electrical conductivity for a system of charged particles subject to an electric field.more » « less
-
Das, Swetamber; Green, Jason_R (, Physical Review E)
-
Martin, Andrew; Green, Jason_R; Thuo, Martin (, Angewandte Chemie International Edition)Abstract Kauzmann paradox (KP) suggests that deeply supercooled liquids can have a lower entropy than the corresponding crystalline solids. While this entropy catastrophe has been thoroughly studied via equilibrium thermodynamics, the solidification process occurs far‐from‐equilibrium. By analyzing this process experimentally and theoretically, we show that surface chemical speciation (oxidation‐driven generation and self‐organization of different species of the alloy components) in core‐shell particles (CSPs) can perturb the entropy production to an extent that a continuum equilibrium phase transition is not possible. Speciation of the surface causes divergence of associated stress vectors that generate nonequilibrium fluxes and frustrates homogeneous nucleation hence deep undercooling. The asymmetry of the speciation‐derived surface tensor skews the minimum entropy production criterion. We analyze a set of nonequilibrium models, one showing and one averting the entropy catastrophe. Applying thermodynamic speed limits to these models, we show that the KP takes another form. Deviations from the speed limit diverge the configurational entropy of the glass, but adding an interfacial state avoids the entropy catastrophe with significantly large supercooling.more » « less
An official website of the United States government
